5 research outputs found

    System Qualities Ontology, Tradespace and Affordability (SQOTA) Project Phase 5

    Get PDF
    Motivation and Context: One of the key elements of the SERC's research strategy is transforming the practice of systems engineering and associated management practices- "SE and Management Transformation (SEMT)." The Grand Challenge goal for SEMT is to transform the DoD community 's current systems engineering and management methods, processes, and tools (MPTs) and practices away from sequential, single stovepipe system, hardware-first ,document-driven, point- solution, acquisition-oriented approaches; and toward concurrent, portfolio and enterprise-oriented, hardware-software-human engineered, model-driven, set-based, full life cycle approaches.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08-D-0171 and HQ0034-13-D-0004 (TO 0060).This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant Secretary of Defense for Research and Engineering (ASD(R&E)) under Contract H98230-08-D-0171 and HQ0034-13-D-0004 (TO 0060)

    System Qualities Ontology, Tradespace and Affordability (SQOTA) Project – Phase 4

    Get PDF
    This task was proposed and established as a result of a pair of 2012 workshops sponsored by the DoD Engineered Resilient Systems technology priority area and by the SERC. The workshops focused on how best to strengthen DoD’s capabilities in dealing with its systems’ non-functional requirements, often also called system qualities, properties, levels of service, and –ilities. The term –ilities was often used during the workshops, and became the title of the resulting SERC research task: “ilities Tradespace and Affordability Project (iTAP).” As the project progressed, the term “ilities” often became a source of confusion, as in “Do your results include considerations of safety, security, resilience, etc., which don’t have “ility” in their names?” Also, as our ontology, methods, processes, and tools became of interest across the DoD and across international and standards communities, we found that the term “System Qualities” was most often used. As a result, we are changing the name of the project to “System Qualities Ontology, Tradespace, and Affordability (SQOTA).” Some of this year’s university reports still refer to the project as “iTAP.”This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004.This material is based upon work supported, in whole or in part, by the U.S. Department of Defense through the Office of the Assistant of Defense for Research and Engineering (ASD(R&E)) under Contract HQ0034-13-D-0004

    Yardstick: A benchmark for minecraft-like services

    Get PDF
    Online gaming applications entertain hundreds of millions of daily active players and often feature vastly complex architecture. Among online games, Minecraft-like games simulate unique (e.g., modifiable) environments, are virally popular, and are increasingly provided as a service. However, the performance of Minecraft-like services, and in particular their scalability, is not well understood. Moreover, currently no benchmark exists for Minecraft-like games. Addressing this knowledge gap, in this work we design and use the Yardstick benchmark to analyze the performance of Minecraft-like services. Yardstick is based on an operational model that captures salient characteristics of Minecraft-like services. As input workload, Yardstick captures important features, such as the most-popular maps used within the Minecraft community. Yardstick captures system- and application-level metrics, and derives from them service-level metrics such as frequency of game-updates under scalable workload. We implement Yardstick, and, through real-world experiments in our clusters, we explore the performance and scalability of popular Minecraft-like servers, including the official vanilla server, and the community-developed servers Spigot and Glowstone. Our findings indicate the scalability limits of these servers, that Minecraft-like services are poorly parallelized, and that Glowstone is the least viable option among those tested
    corecore